Please use this identifier to cite or link to this item: https://hdl.handle.net/2440/60988
Type: Thesis
Title: The effects of selenomethionine and wheat biofortified with selenium on DNA damage and cell death in human lymphocytes.
Author: Wu, Jing
Issue Date: 2010
School/Discipline: School of Agriculture, Food and Wine : Plant and Food Science
Abstract: Selenium (Se) is an essential micronutrient, being a component of more than twenty seleno-proteins in humans. Previous studies suggested that increased intake of Se may reduce the risk of degenerative diseases including cancer; however, excessive intake can be toxic. Wheat is one of the major dietary sources of Se in humans, mainly in the form of L-selenomethionine (Se-met) but the impact of this source of Se on human health at the genome level was previously unexplored. This PhD project aimed to (a) determine the safe dose-range and bio-efficacy of Se-met in vitro; (b) identify the optimal concentration of Se-met for reduction of genome damage in vitro; (c) investigate the optimal concentration of Se-met for improving resistance to gamma radiation or hydrogen peroxide induced genome damage in vitro; d) determine the bioavailability and bioefficacy of Se in vivo, in the form of either Semet or wheat biofortified with Se; e) identify the nutrients and food groups that are correlated with Se intake/status and f) identify the nutrients, food groups and plasma mineral concentrations that are correlated to baseline lymphocyte DNA damage. The in vitro study was performed on the peripheral blood lymphocytes isolated from six males and cultured with media supplemented with Se-met in a series of Se concentrations from 3 to 3850 μg Se/l while keeping the total methionine (i.e. Se-met + L-methionine) concentration constant. Baseline genome stability of lymphocytes and the extent of DNA damage induced by 1.5 Gy γ-ray or 7.5 μM hydrogen peroxide (H₂O₂) were investigated using the Cytokinesis-block Micronucleus Cytome (CBMNCyt) assay and the alkaline Comet assay with and without glycosylase (Fpg or Endo III) treatment after 9 days of culture. Results showed that high Se concentrations (≥1880 μg Se/l) caused strong inhibition of cell division, extensive DNA damage and increased cell death indicating cytotoxicity and genotoxicity. Baseline frequency of nucleoplasmic bridges (NPBs) and nuclear buds (NBud) declined significantly as Se concentration increased from 3 μg Se/l to 430 μg Se/l (P trend = 0.03 and 0.008, respectively); however, a significant trend of increase in Comet DNA damage was also observed (P trend <0.05) in lymphocytes. Selenium concentration (≤ 430 μg Se/l) had no significant effect on baseline frequency of micronuclei (MN) or DNA oxidation and had no protective effect against γ-ray-induced or H₂O₂-induced genome damage in lymphocytes. A randomised double-blind placebo-controlled intervention trial was conducted on healthy South Australian males (n = 62, age (mean ± SD) 56 ± 7.0 years) with Se dosage increased every 8 weeks for a total duration of 24 weeks. This study compared the bioavailability, by using plasma Se concentration as the biomarker, and bioefficacy of Se, by using platelet glutathione peroxidase (GPx) activity and lymphocyte DNA damage as biomarkers, from wheat process-fortified with Se-met (PROFORT) and high-Se wheat biofortified with Se (BIOFORT) compared to non-fortified normal (CONTROL) wheat. It was found that increased Se intake from BIOFORT wheat increased plasma Se concentration effectively in a dose-response manner from a baseline of 122 μg/l up to 190 μg/l (P<0.001). Increased Se intake from PROFORT wheat also increased plasma Se with a plateau at 140 μg/l, being therefore less effective than BIOFORT wheat (P<0.001). There was no significant change in Se status in the CONTROL group. Improved plasma Se concentrations had no effect on platelet GPx activity or lymphocyte DNA damage in either of the intervention groups. Results from the food frequency questionnaire (FFQ) survey (n = 173) and plasma Se concentration survey (n = 179) suggested that the study population screened for participation in the in vivo trial described above had a mean plasma Se concentration (± SD) of 102 (± 12) μg/l and a mean (± SD) estimated Se intake of 165 (± 68) μg/d. This is a higher estimated Se intake than found in previous Australian studies. The major dietary sources of Se were found to be bread/cereals, fish/seafood and meat. However, increased intake of nuts/seeds, which are rich in Se, may have undesirable effects on lymphocyte DNA oxidation in this Se-replete population. In conclusion, the in vitro studies suggest that (1) Se-met at higher concentrations at greater or equal to 1880 μg Se/l is cytotoxic; (2) Se-met may improve specific genome stability biomarkers such as nucleoplasmic bridge and nuclear bud at concentrations up to 430 μg Se/l, but further studies are needed to verify this effect. The in vivo studies in older men showed that Se from BIOFORT wheat is more effective in raising plasma Se concentration than Se from wheat process-fortified by the addition of Se-met, when both wheat products were subjected to strong heat. However, the platelet GPx activity and lymphocyte DNA damage appeared not to be modified by improved Se status. This work contains two publications: 1) "The effect of selenium, as selenomethionine, on genome stability and cytotoxicity in human lymphocytes as measured by the cytokinesis-block micronucleus cytome assay". Mutagenesis 2009 May;24(3):225-32. 2) "Increased consumption of wheat biofortified with selenium does not modify biomarkers of cancer risk, oxidative stress or immune function in Australian males" Environmental Molecular Mutagenesis. 2009 July; 50 (6):489-501 The latter one was not able to be published in a journal of higher impact factor due to part of the data had been published elsewhere. Both articles are attached in Appendix.
Advisor: Fenech, Michael Felix
Lyons, Graham H.
Graham, Robin David
Dissertation Note: Thesis (Ph.D.) -- University of Adelaide, School of Agriculture, Food and Wine, 2010
Keywords: selenomethionine; biofortified wheat; chromosome/DNA damage; human lymphocytes
Provenance: Copyright material removed from digital thesis. See print copy in University of Adelaide Library for full text.
Appears in Collections:Research Theses

Files in This Item:
File Description SizeFormat 
01front.pdf52.12 kBAdobe PDFView/Open
02whole.pdf1.58 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.