Please use this identifier to cite or link to this item: https://hdl.handle.net/2440/96298
Citations
Scopus Web of Science® Altmetric
?
?
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSanij, E.-
dc.contributor.authorDiesch, J.-
dc.contributor.authorLesmana, A.-
dc.contributor.authorPoortinga, G.-
dc.contributor.authorLidgerwood, G.-
dc.contributor.authorHein, N.-
dc.contributor.authorCameron, D.-
dc.contributor.authorEllul, J.-
dc.contributor.authorGoodall, G.-
dc.contributor.authorWong, L.-
dc.contributor.authorDhillon, A.-
dc.contributor.authorHamdane, N.-
dc.contributor.authorRothblum, L.-
dc.contributor.authorPearson, R.-
dc.contributor.authorHaviv, I.-
dc.contributor.authorMoss, T.-
dc.contributor.authorHannan, R.-
dc.date.issued2015-
dc.identifier.citationGenome Research, 2015; 25(2):201-212-
dc.identifier.issn1088-9051-
dc.identifier.issn1549-5469-
dc.identifier.urihttp://hdl.handle.net/2440/96298-
dc.description.abstractMechanisms to coordinate programs of highly transcribed genes required for cellular homeostasis and growth are unclear. Upstream binding transcription factor 1 (UBTF, also called UBF) is thought to function exclusively in RNA polymerase I (Pol I)-specific transcription of the ribosomal genes. Here we report that, the two isoforms of UBTF (UBTF1/2) are also enriched at highly expressed Pol II-transcribed genes throughout the mouse genome. Further analysis of UBTF1/2 DNA binding in immortalised human epithelial cells and their isogenically matched transformed counterparts reveals an additional repertoire of UBTF1/2-bound genes involved in the regulation of cell cycle checkpoints and DNA damage response. As proof of a functional role for UBTF1/2 in regulating Pol II transcription, we demonstrate that UBTF1/2 is required for recruiting Pol II to the highly transcribed histone gene clusters and for their optimal expression. Intriguingly, lack of UBTF1/2 does not affect chromatin marks or nucleosome density at histone genes. Instead it results in increased accessibility of the histone promoters and transcribed regions to micrococcal nuclease, implicating UBTF1/2 in mediating DNA accessibility. Unexpectedly, UBTF2, which does not function in Pol I transcription, is sufficient to regulate histone gene expression in the absence of UBTF1. Moreover, depletion of UBTF1/2 and subsequent reduction in histone gene expression is associated with DNA damage and genomic instability independent of Pol I transcription. Thus, we have uncovered a novel role for UBTF1 and UBTF2 in maintaining genome stability through coordinating the expression of highly transcribed Pol I (UBTF1 activity) and Pol II genes (UBTF2 activity).-
dc.description.statementofresponsibilityElaine Sanij, Jeannine Diesch, Analia Lesmana, Gretchen Poortinga, Nadine Hein, Grace Lidgerwood, Donald P. Cameron, Jason Ellul, Gregory J. Goodall, Lee H. Wong, Amardeep S. Dhillon, Nourdine Hamdane, Lawrence I. Rothblum, Richard B. Pearson, Izhak Haviv, Tom Moss, and Ross D. Hannan-
dc.language.isoen-
dc.publisherCSH Press-
dc.rights© 2015 Sanij et al. This article, published in Genome Research, is available under a Creative Commons License (Attribution-NonCommercial 4.0 International), as described at http://creativecommons.org/licenses/by-nc/4.0/.-
dc.source.urihttp://dx.doi.org/10.1101/gr.176115.114-
dc.subjectCell Line, Transformed-
dc.subjectNIH 3T3 Cells-
dc.subjectChromatin-
dc.subjectNucleosomes-
dc.subjectAnimals-
dc.subjectHumans-
dc.subjectMice-
dc.subjectDNA Damage-
dc.subjectGenomic Instability-
dc.subjectRNA Polymerase I-
dc.subjectRNA Polymerase II-
dc.subjectPol1 Transcription Initiation Complex Proteins-
dc.subjectHistones-
dc.subjectChromatin Immunoprecipitation-
dc.subjectComputational Biology-
dc.subjectTranscription, Genetic-
dc.subjectGene Expression Regulation-
dc.subjectBinding Sites-
dc.subjectProtein Binding-
dc.subjectMultigene Family-
dc.subjectTranscription Initiation Site-
dc.subjectGene Knockdown Techniques-
dc.subjectHigh-Throughput Nucleotide Sequencing-
dc.titleA novel role for the Pol I transcription factor UBTF in maintaining genome stability through the regulation of highly transcribed Pol II genes-
dc.typeJournal article-
dc.identifier.doi10.1101/gr.176115.114-
pubs.publication-statusPublished-
dc.identifier.orcidGoodall, G. [0000-0003-1294-0692]-
Appears in Collections:Aurora harvest 3
Medicine publications

Files in This Item:
File Description SizeFormat 
hdl_96298.pdfPublished version1.46 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.