Please use this identifier to cite or link to this item: https://hdl.handle.net/2440/97179
Citations
Scopus Web of Science® Altmetric
?
?
Type: Journal article
Title: Distinctive expansion of potential virulence genes in the genome of the oomycete fish pathogen Saprolegnia parasitica
Author: Jiang, R.
de Bruijn, I.
Haas, B.
Belmonte, R.
Löbach, L.
Christie, J.
van den Ackerveken, G.
Bottin, A.
Bulone, V.
Díaz-Moreno, S.
Dumas, B.
Fan, L.
Gaulin, E.
Govers, F.
Grenville-Briggs, L.
Horner, N.
Levin, J.
Mammella, M.
Meijer, H.
Morris, P.
et al.
Citation: PLoS Genetics, 2013; 9(6):e1003272-1-e1003272-20
Publisher: Public Library of Science
Issue Date: 2013
ISSN: 1553-7404
1553-7404
Editor: McDowell, J.
Statement of
Responsibility: 
Rays H. Y. Jiang ... Vincent Bulone ... et al.
Abstract: Oomycetes in the class Saprolegniomycetidae of the Eukaryotic kingdom Stramenopila have evolved as severe pathogens of amphibians, crustaceans, fish and insects, resulting in major losses in aquaculture and damage to aquatic ecosystems. We have sequenced the 63 Mb genome of the fresh water fish pathogen, Saprolegnia parasitica. Approximately 1/3 of the assembled genome exhibits loss of heterozygosity, indicating an efficient mechanism for revealing new variation. Comparison of S. parasitica with plant pathogenic oomycetes suggests that during evolution the host cellular environment has driven distinct patterns of gene expansion and loss in the genomes of plant and animal pathogens. S. parasitica possesses one of the largest repertoires of proteases (270) among eukaryotes that are deployed in waves at different points during infection as determined from RNA-Seq data. In contrast, despite being capable of living saprotrophically, parasitism has led to loss of inorganic nitrogen and sulfur assimilation pathways, strikingly similar to losses in obligate plant pathogenic oomycetes and fungi. The large gene families that are hallmarks of plant pathogenic oomycetes such as Phytophthora appear to be lacking in S. parasitica, including those encoding RXLR effectors, Crinkler's, and Necrosis Inducing-Like Proteins (NLP). S. parasitica also has a very large kinome of 543 kinases, 10% of which is induced upon infection. Moreover, S. parasitica encodes several genes typical of animals or animal-pathogens and lacking from other oomycetes, including disintegrins and galactose-binding lectins, whose expression and evolutionary origins implicate horizontal gene transfer in the evolution of animal pathogenesis in S. parasitica.
Keywords: Animals
Fishes
Oomycetes
Saprolegnia
Plants
Evolution, Molecular
Phylogeny
Virulence
Gene Transfer, Horizontal
Amino Acid Sequence
Base Sequence
Genome
Host-Parasite Interactions
Rights: © 2013 Jiang et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
DOI: 10.1371/journal.pgen.1003272
Published version: http://dx.doi.org/10.1371/journal.pgen.1003272
Appears in Collections:Agriculture, Food and Wine publications
Aurora harvest 3

Files in This Item:
File Description SizeFormat 
hdl_97179.pdfPublished version2.5 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.